Published June 4, 1997 | Supplemental Material
Journal Article Open

Spectroscopy and Electrochemistry of Cobalt(III) Schiff Base Complexes

An error occurred while generating the citation.

Abstract

The structural, spectroscopic, and electrochemical properties of cobalt(III) derivatives of acacen (H_2acacen = bis(acetylacetone) ethylenediimine) and related ligands have been investigated. Electronic structure calculations indicate that the absorption between 340 and 378 nm in Co^(III)(acacen) spectra is attributable to the lowest π−π* intraligand charge-transfer transition. Equatorial ligand substitutions affect reduction potentials less than axial ligand changes, consistent with an electronic structural model in which d_(z^2) is populated in forming cobalt(II). The crystal structure of [Co(3-Cl-acacen)(NH_3)_2]BPh_4 has been determined:  The compound crystallizes in the monoclinic space group (P2_1)/m (No. 11) with a = 9.720(2) Å, b = 18.142(4) Å, c = 10.046(2) Å, β = 100.11(3)°, D_c = 1.339 g cm^(-3), and Z = 2; the complex cation, [Co(3-Cl-acacen)(NH_3)_2]^+, exhibits a slightly distorted octahedral coordination geometry. The distances between the cobalt atom and the two axial nitrogen donor atoms differ only slightly (1.960(6) and 1.951(6) Å) and are similar to Co−N distances found in cobalt−ammine complexes as well as the axial Co−N distances in [Co(acacen)(4-MeIm)_2]Br·1.5H_2O; the latter compound crystallizes in the triclinic space group P1̄ (No. 2) with a = 18.466(9) Å, b = 14.936(7) Å, c = 10.111(5)Å, α = 96.27(5)°, β = 94.12(5)°, γ = 112.78(5)°, D_c = 1.447 g cm^(-3), and Z = 4.

Additional Information

© 1997 American Chemical Society. Received September 18, 1996. A.B. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship. This work was supported by NSF, the Arnold and Mabel Beckman Foundation, and Redox Pharmaceutical Corp.

Attached Files

Supplemental Material - ic2498.pdf

Files

ic2498.pdf
Files (803.1 kB)
Name Size Download all
md5:7e4754940ec42bf302ddae9259b578c0
803.1 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023