Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 6, 2018 | Published + Supplemental Material
Journal Article Open

Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films

Abstract

Three decades after the prediction of charge-vortex duality in the critical vicinity of the two-dimensional superconductor-insulator transition (SIT), one of the fundamental implications of this duality—the charge Berezinskii-Kosterlitz-Thouless (BKT) transition that should occur on the insulating side of the SIT—has remained unobserved. The dual picture of the process points to the existence of a superinsulating state endowed with zero conductance at finite temperature. Here, we report the observation of the charge BKT transition on the insulating side of the SIT in 10 nm thick NbTiN films, identified by the BKT critical behavior of the temperature and magnetic field dependent resistance, and map out the magnetic-field dependence of the critical temperature of the charge BKT transition. Finally, we ascertain the effects of the finite electrostatic screening length and its divergence at the magnetic field-tuned approach to the superconductor-insulator transition.

Additional Information

© 2018 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Received: 04 January 2018; Accepted: 22 February 2018; Published online: 06 March 2018. This work was supported by the Ministry of Education and Science of the Russian Federation, by the Grant of the President RF, project No MK-4628.2016.2 (A.Yu.M., S.V.P., M.V.B., and A.K.G.). The high resolution electron microscopy was performed with support of RSF, project No 14-22-00143. The work at Caltech was supported by National Science Foundation Grant No. DMR-1606858 (D.M.S. and T.F.R.). The work at Argonne was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division (V.M.V., T.P., and visits of T.I.B.). T.I.B. also acknowledges support by the Alexander von Humboldt Foundation and from the Consejeria de Educacian, Cultura y Deporte (Comunidad de Madrid) through the talent attraction program, Ref. 2016-T3/IND-1839. A.Yu.M. and T.I.B. were also supported from the Argonne-University of Chicago collaborative seed grant. We are delighted to thank E. Shimshoni for illuminating discusions. Author Contributions: T.I.B., V.M.V., and T.F.R. conceived the project and initiated this work; the films were synthesized by T.P.; A.Yu.M., D.M.S., S.V.P., M.V.B., and T.I.B. carried out the experiments; A.K.G. performed high resolution electron microscopy; A.Yu.M., D.M.S., T.F.R., V.M.V., and T.I.B. analyzed the data. All authors discussed the results and contributed in writing the manuscript. The authors declare no competing interests.

Attached Files

Published - s41598-018-22451-1.pdf

Supplemental Material - 41598_2018_22451_MOESM1_ESM.pdf

Files

41598_2018_22451_MOESM1_ESM.pdf
Files (3.6 MB)
Name Size Download all
md5:8a7b5d54b1b5f70b6ec40be43df7b56a
621.5 kB Preview Download
md5:cf66290dc95ce6bf6abfa66b1e93210b
3.0 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
March 5, 2024