Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2018 | Accepted Version
Journal Article Open

From Google Maps to a fine-grained catalog of street trees

Abstract

Up-to-date catalogs of the urban tree population are of importance for municipalities to monitor and improve quality of life in cities. Despite much research on automation of tree mapping, mainly relying on dedicated airborne LiDAR or hyperspectral campaigns, tree detection and species recognition is still mostly done manually in practice. We present a fully automated tree detection and species recognition pipeline that can process thousands of trees within a few hours using publicly available aerial and street view images of Google Maps(TM). These data provide rich information from different viewpoints and at different scales from global tree shapes to bark textures. Our work-flow is built around a supervised classification that automatically learns the most discriminative features from thousands of trees and corresponding, publicly available tree inventory data. In addition, we introduce a change tracker that recognizes changes of individual trees at city-scale, which is essential to keep an urban tree inventory up-to-date. The system takes street-level images of the same tree location at two different times and classifies the type of change (e.g., tree has been removed). Drawing on recent advances in computer vision and machine learning, we apply convolutional neural networks (CNN) for all classification tasks. We propose the following pipeline: download all available panoramas and overhead images of an area of interest, detect trees per image and combine multi-view detections in a probabilistic framework, adding prior knowledge; recognize fine-grained species of detected trees. In a later, separate module, track trees over time, detect significant changes and classify the type of change. We believe this is the first work to exploit publicly available image data for city-scale street tree detection, species recognition and change tracking, exhaustively over several square kilometers, respectively many thousands of trees. Experiments in the city of Pasadena, California, USA show that we can detect >70% of the street trees, assign correct species to >80% for 40 different species, and correctly detect and classify changes in >90% of the cases.

Additional Information

© 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. Received 13 July 2017, Revised 8 November 2017, Accepted 8 November 2017, Available online 20 November 2017.

Attached Files

Accepted Version - 1910.02675.pdf

Files

1910.02675.pdf
Files (6.1 MB)
Name Size Download all
md5:af65ac3bbd872088afbefabbd217a100
6.1 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023