Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2016 | Published
Journal Article Open

Precision Timing with shower maximum detectors based on pixelated micro-channel plates

Abstract

Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. In this report we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beam measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.

Additional Information

© 2017 Published under licence by IOP Publishing Ltd. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Operated by Fermi Research Alliance, LLC under Contract no. DE-AC02-07CH11359 with the United States Department of Energy. Supported by funding from California Institute of Technology High Energy Physics under Contract DE-SC0011925 with the United States Department of Energy. We thank the FTBF personnel for very good beam conditions during our test beam time.

Attached Files

Published - Bornheim_2017_J._Phys._3A_Conf._Ser._928_012016.pdf

Files

Bornheim_2017_J._Phys._3A_Conf._Ser._928_012016.pdf
Files (2.4 MB)

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023