Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2017 | public
Book Section - Chapter

Quantum Speed-Ups for Solving Semidefinite Programs

Abstract

We give a quantum algorithm for solving semidefinite programs (SDPs). It has worst-case running time n^(1/2) m^(1/2) s^2 poly(log(n), log(m), R, r, 1/δ), with n and s the dimension and row-sparsity of the input matrices, respectively, m the number of constraints, δ the accuracy of the solution, and R, r upper bounds on the size of the optimal primal and dual solutions, respectively. This gives a square-root unconditional speed-up over any classical method for solving SDPs both in n and m. We prove the algorithm cannot be substantially improved (in terms of n and m) giving a Ω(n^(1/2) + m^2) quantum lower bound for solving semidefinite programs with constant s, R, r and δ. The quantum algorithm is constructed by a combination of quantum Gibbs sampling and the multiplicative weight method. In particular it is based on a classical algorithm of Arora and Kale for approximately solving SDPs. We present a modification of their algorithm to eliminate the need for solving an inner linear program which may be of independent interest.

Additional Information

© 2017 IEEE. We thank Joran van Apeldoorn, Ronald de Wolf, Andras Gilyen, Aram Harrow, Sander Gribling, Matt Hastings, Cedric Yen-Yu Lin, Ojas Parekh, and David Poulin for interesting discussions and useful comments on the paper. This work was funded by Cambridge Quantum Computing, Microsoft and the National Science Foundation.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023