Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 21, 2017 | public
Book Section - Chapter

Source Functions and Path Effects from Earthquakes in the Farallon Transform Fault Region, Gulf of California, Mexico that Occurred on October 2013

Abstract

We determined source spectral functions, Q and site effects using regional records of body waves from the October 19, 2013 (M_w = 6.6) earthquake and eight aftershocks located 90 km east of Loreto, Baja California Sur, Mexico. We also analyzed records from a foreshock with magnitude 3.3 that occurred 47 days before the mainshock. The epicenters of this sequence are located in the south-central region of the Gulf of California (GoC) near and on the Farallon transform fault. This is one of the most active regions of the GoC, where most of the large earthquakes have strike–slip mechanisms. Based on the distribution of the aftershocks, the rupture propagated northwest with a rupture length of approximately 27 km. We calculated 3-component P- and S-wave spectra from ten events recorded by eleven stations of the Broadband Seismological Network of the GoC (RESBAN). These stations are located around the GoC and provide good azimuthal coverage (the average station gap is 39◦). The spectral records were corrected for site effects, which were estimated calculating average spectral ratios between horizontal and vertical components (HVSR method). The site-corrected spectra were then inverted to determine the source functions and to estimate the attenuation quality factor Q. The values of Q resulting from the spectral inversion can be approximated by the relations Q_P = 48.1 1±1^(f0:880:04) and QS = 135:4 1:1f ±^(0:580:03) and are consistent with previous estimates reported by Vidales-Basurto et al. (Bull Seism Soc Am 104:2027–2042, 2014) for the south-central GoC. The stress drop estimates, obtained using the ω^2 model, are below 1.7 MPa, with the highest stress drops determined for the mainshock and the aftershocks located in the ridge zone. We used the values of Q obtained to recalculate source and site effects with a different spectral inversion scheme. We found that sites with low S-wave amplification also tend to have low P-wave amplification, except for stations BAHB, GUYB and SFQB, located on igneous rocks, where the P-wave site amplification is higher.

Additional Information

© 2018 Springer International Publishing AG. First Online: 21 December 2017. Reprinted from: Pure Appl. Geophys. 174 (2017), 2239–2256, 2016 Springer International Publishing. DOI 10.1007/s00024-016-1346-4. The operation of the RESBAN network has been possible thanks to the financial support of the Mexican National Council for Science and Technology (CONACYT) (projects CB-2011-01-165401(C0C059), G33102-T and 59216). This paper was prepared while the first author (RRC) was on sabbatical year in Caltech. We thank Prof. Gurnis for the support provided. Dr. Lenin Avila-Barrientos facilitated part of the spectral records used to calculate the site functions. Antonio Mendoza Camberos pre-process the data from the RESBAN network and Arturo Perez Vertti maintains and operates the stations. We thank Dr. Edwards and the anonymous reviewer for their careful revisions, comments and suggestions which help us to improve the manuscript. We also acknowledge the Editor, Dr. Thomas H.W. Goebel.

Additional details

Created:
August 21, 2023
Modified:
January 14, 2024