Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2002 | public
Journal Article

Probe–Sample Coupling in the Magnetic Resonance Force Microscope

Abstract

The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K.

Additional Information

© 2002 Elsevier Science. Received April 30, 2001; revised October 30, 2001. This work was supported by the U.S. Department of Energy through the Office of Basic Energy Sciences and the Los Alamos National Laboratory Directed Research and Development. One of us (A.S.) is grateful for the partial financial support of the Swiss National Science Foundation.

Additional details

Created:
August 21, 2023
Modified:
October 17, 2023