Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2017 | public
Journal Article

Void-shape effects on strength properties of nanoporous materials

Abstract

In this paper, strength properties of nanoporous materials with spheroidal nanocavities are investigated via a Molecular Dynamics approach applied to a nanovoided aluminium single crystal, in the case of a fixed porosity level, and for prolate, oblate and spherical void shapes. Estimates of the effective strength domain are provided, by considering several mechanical loadings including axisymmetric and shear strain-rate states. Void-shape effects are quantified for different values of the void aspect ratio, mainly resulting in an overall weakening of the sample as the spheroidal nanovoid assumes either an oblate or a prolate shape, in comparison to the case of a spherical void. Finally, it is observed that the computed strength profiles exhibit the following specific features: (i) a strong dependence on the hydrostatic, second-order and third-order deviatoric stress invariants, (ii) more significant void-shape effects for triaxial-expansion stress states with a small hydrostatic component, and (iii) a more pronounced influence of the spheroid shape, as the aspect ratio is varied, in the presence of an oblate nanovoid rather than of a prolate one.

Additional Information

© 2017 Elsevier Ltd. Received 11 July 2017, Revised 11 October 2017, Accepted 26 October 2017, Available online 1 November 2017.

Additional details

Created:
August 21, 2023
Modified:
October 17, 2023