Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 26, 2017 | Submitted + Published
Journal Article Open

Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at √s = 13 TeV

Abstract

A search is performed for third-generation scalar leptoquarks and heavy right-handed neutrinos in events containing one electron or muon, one hadronically decaying τ lepton, and at least two jets, using a √s = 13 TeV pp collision data sample corresponding to an integrated luminosity of 12.9 fb^(-1) collected with the CMS detector at the LHC in 2016. The number of observed events is found to be in agreement with the standard model prediction. A limit is set at 95% confidence level on the product of the leptoquark pair production cross section and β^2, where β is the branching fraction of leptoquark decay to a τ lepton and a bottom quark. Assuming β = 1, third-generation leptoquarks with masses below 850 GeV are excluded at 95% confidence level. An additional search based on the same event topology involves heavy right-handed neutrinos, N_R, and right-handed W bosons, W_R, arising in a left-right symmetric extension of the standard model. In this search, W_R bosons are assumed to decay to a tau lepton and N_R followed by the decay of the N_R to a tau lepton and an off-shell W_R boson. Assuming the mass of the right-handed neutrino to be half of the mass of the right-handed W boson, W_R boson masses below 2.9 TeV are excluded at 95% confidence level. These results improve on the limits from previous searches for third-generation leptoquarks and heavy right-handed neutrinos with τ leptons in the final state.

Additional Information

© CERN 2017, Open Access, for the benefit of the CMS Collaboration. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. Article funded by SCOAP3. Received March 11, 2017; revised June 21, 2017; accepted July 12, 2017; published July 3, 2017. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

Attached Files

Published - 10.1007_JHEP07_2017_121.pdf

Submitted - 1703.03995.pdf

Files

10.1007_JHEP07_2017_121.pdf
Files (1.1 MB)
Name Size Download all
md5:3ed388cc51604b497f5059ce6d889df8
590.0 kB Preview Download
md5:c542477011a7e7442369fc1f64479188
537.7 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 17, 2023