Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 16, 2017 | Submitted + Published
Journal Article Open

Topological frequency conversion in strongly driven quantum systems

Abstract

When a physical system is subjected to a strong external multifrequency drive, its dynamics can be conveniently represented in the multidimensional Floquet lattice. The number of Floquet lattice dimensions equals the number of irrationally-related drive frequencies, and the evolution occurs in response to a built-in effective "electric" field, whose components are proportional to the corresponding drive frequencies. The mapping allows us to engineer and study temporal analogs of many real-space phenomena. Here, we focus on the specific example of a two-level system under a two-frequency drive that induces topologically nontrivial band structure in the 2D Floquet space. The observable consequence of such a construction is the quantized pumping of energy between the sources with frequencies ω_1 and ω_2. When the system is initialized into a Floquet band with the Chern number C, the pumping occurs at a rate P_(12)=−P_(21)=(C/2π)ℏω_1ω_2, an exact counterpart of the transverse current in a conventional topological insulator.

Additional Information

© 2017 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Received 25 January 2017; published 16 October 2017. The authors would like to thank J. Sau, M. Sanchez, A. Yacobi, V. Manucharyan, M. Gullans, M. Lukin, F. Nathan, and Y. Oreg for useful discussions. I. M. acknowledges support from the Department of Energy, Office of Basic Energy Science, Materials Science and Engineering Division. G. R. acknowledges support from the National Science Foundation (NSF) through Grant No. DMR-1410435, as well as the Institute of Quantum Information and Matter, a NSF Frontier center funded in part by the Gordon and Betty Moore Foundation, and the Packard Foundation. B. H. acknowledges support from the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1125915. We are also grateful to the Aspen Center for Physics, operating under NSF Grant No. 1066293, where part of the work was done.

Attached Files

Published - PhysRevX.7.041008.pdf

Submitted - 1612.02143.pdf

Files

PhysRevX.7.041008.pdf
Files (9.7 MB)
Name Size Download all
md5:b1cc8738ab5b04a25d254ba8190895a5
5.2 MB Preview Download
md5:d758fb422b56c2e64ea11d0905f6c5bf
4.4 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023