Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 1, 2017 | Submitted + Published
Journal Article Open

Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at √s = 13 TeV

Abstract

A search for supersymmetry is performed in events with a single electron or muon in proton-proton collisions at a center-of-mass energy of 13 TeV. The data were recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 2.3 fb^(−1). Several exclusive search regions are defined based on the number of jets and b-tagged jets, the scalar sum of the jet transverse momenta, and the scalar sum of the missing transverse momentum and the transverse momentum of the lepton. The observed event yields in data are consistent with the expected backgrounds from standard model processes. The results are interpreted using two simplified models of supersymmetric particle spectra, both of which describe gluino pair production. In the first model, each gluino decays via a three-body process to top quarks and a neutralino, which is associated with the observed missing transverse momentum in the event. Gluinos with masses up to 1.6 TeV are excluded for neutralino masses below 600 GeV. In the second model, each gluino decays via a three-body process to two light quarks and a chargino, which subsequently decays to a W boson and a neutralino. The mass of the chargino is taken to be midway between the gluino and neutralino masses. In this model, gluinos with masses below 1.4 TeV are excluded for neutralino masses below 700 GeV.

Additional Information

© 2017 CERN, for the CMS Collaboration. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Received 29 September 2016; published 27 January 2017. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering, so effectively, the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced by European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center NCN(Poland), Contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, Contract No. C-1845.

Attached Files

Published - PhysRevD.95.012011.pdf

Submitted - 1609.09386.pdf

Files

PhysRevD.95.012011.pdf
Files (1.9 MB)
Name Size Download all
md5:7294c12322ef7346a93371467767de02
725.8 kB Preview Download
md5:39c2abdadcba1cbbab100cda89e872a3
1.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023