Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 15, 2014 | Submitted
Journal Article Open

Active Learning of Multiple Source Multiple Destination Topologies

Abstract

We consider the problem of inferring the topology of a network with M sources and N receivers (an M-by- N network), by sending probes between the sources and receivers. Prior work has shown that this problem can be decomposed into two parts: first, infer smaller subnetwork components (1-by- N's or 2-by-2's) and then merge them to identify the M-by- N topology. We focus on the second part, which had previously received less attention in the literature. We assume that a 1-by- N topology is given and that all 2-by-2 components can be queried and learned using end-to-end probes. The problem is which 2-by-2's to query and how to merge them with the given 1-by- N, so as to exactly identify the 2-by- N topology, and optimize a number of performance metrics, including the number of queries (which directly translates into measurement bandwidth), time complexity, and memory usage. We provide a lower bound, [N/2], on the number of 2-by-2's required by any active learning algorithm and propose two greedy algorithms. The first algorithm follows the framework of multiple hypothesis testing, in particular Generalized Binary Search (GBS). The second algorithm is called the Receiver Elimination Algorithm (REA) and follows a bottom-up approach. It requires exactly N-1 steps, which is much less than all (2N) possible 2-by-2's. Simulation results demonstrate that both algorithms correctly identify the 2-by- N topology and are near-optimal, but REA is more efficient in practice.

Additional Information

© 2014 IEEE. Manuscript received July 27, 2013; accepted January 16, 2014. Date of publication February 04, 2014; date of current version March 17, 2014. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Shuguang (Robert) Cui. This work was supported by an NSF Award 1028394, AFOSR Award FA9550-10-1-0310 and AFOSR MURI FA9550-09-0643. The work of M. Rabbat was supported in part by the Natural Sciences and Engineering Research Council of Canada.

Attached Files

Submitted - 1212.2310.pdf

Files

1212.2310.pdf
Files (883.5 kB)
Name Size Download all
md5:2abfb768e3a518416c3c947f5b8f1bf3
883.5 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 17, 2023