Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water
Abstract
Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al_2O_3, Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.
Additional Information
© 2017 American Chemical Society. Received 20 September 2016. Published online 24 January 2017. Published in print 8 February 2017. The project receives financial support from the NSFC (21674039, 21471061, and 21671071), China Postdoctoral Science Foundation (2016M602481), NSFC of Guangdong Province (2014A030311001), and Guangdong Provincial Department of Science and Technology (2015B010135009).Attached Files
Supplemental Material - ja6b09863_si_001.pdf
Supplemental Material - ja6b09863_si_002.avi
Supplemental Material - ja6b09863_si_003.avi
Files
Name | Size | Download all |
---|---|---|
md5:74c3488b2a79a2eee736d4d214559868
|
2.2 MB | Download |
md5:5a70f931342880c1ddf7779fe50c12bf
|
681.0 kB | Preview Download |
md5:bcdd9489b848396d19b0fa1f7d7cc556
|
6.0 MB | Download |
Additional details
- Eprint ID
- 81728
- Resolver ID
- CaltechAUTHORS:20170922-080627968
- National Science Foundation of China
- 21674039
- National Science Foundation of China
- 21471061
- National Science Foundation of China
- 21671071
- China Postdoctoral Science Foundation
- 2016M602481
- National Science Foundation of China of Guangdong Province
- 2014A030311001
- Guangdong Provincial Department of Science and Technology
- 2015B010135009
- Created
-
2017-09-22Created from EPrint's datestamp field
- Updated
-
2021-11-15Created from EPrint's last_modified field