Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1, 2017 | Submitted + Published
Journal Article Open

Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

Abstract

During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.

Additional Information

© 2017 American Astronomical Society. Received 2017 April 20. Accepted 2017 July 29. Published 2017 August 31. We are grateful to Christine Done for discussions on the warm Comptonization model. Support for this work was provided by the National Aeronautics and Space Administration (NASA) through Chandra Award Number G04-15114X to S.M. issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Support for HST program GO-13330 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. C.S.K. is supported in part by NSF grants AST-1515876 and AST-1515927. K.H. acknowledges support from STFC grant ST/M001296/1. K.L.P. and P.A.E. ackowledge support from the UK Space Agency. A.V.F.'s group at UC Berkeley is grateful for financial assistance from NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund. Y.K. acknowledges support from the grant PAIIPIT IN104215 and CONACYT grant168519. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester (see Evans et al. 2009).

Attached Files

Published - Mathur_2017_ApJ_846_55.pdf

Submitted - 1704.06345.pdf

Files

Mathur_2017_ApJ_846_55.pdf
Files (1.6 MB)
Name Size Download all
md5:773ef311482098630227583425afd652
845.2 kB Preview Download
md5:c174c0df35904b331651a6af8e092859
745.6 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 17, 2023