Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1978 | public
Book Section - Chapter

Interaction Effects on the Drag of Bluff Bodies in Tandem

Abstract

The objective of this study is to obtain better understanding of the flow over two tandemly positioned bluff bodies in close enough proximity to strongly interact with each other. This interaction is often beneficial in that the drag of the overall system is reduced. Prototypes for this problem come from tractor-trailer and cab-van combinations, and from various add-on devices designed to reduce their drag. The primary object of the present investigation is an axisymmetric configuration which seems to have first been studied by Saunders (1966). A disc of diameter d_1 is coaxially placed in front of a flat-faced cylinder of diameter d_2. For a given ratio d1/d2, there is a value of gap ratio, g*/d_2, for which the drag of the forebody system is a minimum. In the most optimum configuration, d_1/d_2 = 0.75, g*/d_2 = 0.375, and the corresponding forebody drag coefficient is 0.02, a remarkable reduction from the value of 0.75 for the cylinder alone. For each value of d_1/d_2, the minimum drag configuration, g*/d_2, appears to correspond to a minimum dissipation condition in which the separation stream surface just matches (joins tangentially onto) the rearbody. Support for this idea is furnished by comparison with some results derived from free-streamline theory and from flow visualization experiments. However, when g*/d_2 exceeds a critical value of about 0.5, the value of C_(Dmin) is almost an order of magnitude higher than for subcritical optimum gap ratios. The increase seems to be connected with the onset of cavity oscillations. For non-axisymmetric geometry (square cross-sections) the separation surface cannot exactly match the rearbody and the subcritical minimum values of drag are higher than for circular cross-sections.

Additional Information

© 1978 Plenum Press, New York.

Additional details

Created:
August 19, 2023
Modified:
October 26, 2023