Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 15, 2017 | public
Book Section - Chapter

Recent Advances in Directed Phytase Evolution and Rational Phytase Engineering

Abstract

Phytases are hydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Phytate is the major phosphorous storage compound in cereal gains, oilseeds, and legumes and is indigestible by monogastric animals such as poultry and swine. Supplementation of phytase in animal feed proved to improve animal nutrition and decrease phosphorous pollution. Several phytases were discovered in the last century, and today a highly competitive market situation emerged the demands for phytases that are redesigned to excellently match industrial demands. Phytase engineering by directed evolution and rational design has offered a robust approach to tailor-made phytases with high specific activity, broad thermal and pH profile, and protease resistance. In this chapter, we summarized challenges and successful approaches employed in phytase engineering. Factors influencing phytase thermostability, pH stability, pH optima, and protease resistance have been discussed with respect to structural perspective and potential molecular mechanism for improvement. Importance of cooperative substitutions and a way to identify these interactions are discussed. Recent development in screening technology and molecular insights in combining key beneficial substitutions are detailed. In addition, strategies and approaches for rapid and efficient evolution of phytases and to understand structure function relationships on a molecular level have been proposed.

Additional Information

© 2017 Springer International Publishing AG. First Online: 15 February 2017.

Additional details

Created:
August 19, 2023
Modified:
October 26, 2023