Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 15, 2007 | Supplemental Material
Journal Article Open

Linking Molecular Switches to Platinum Electrodes Studied with DFT

Abstract

Density functional theory (DFT) with the B3LYP exchange−correlation functional was used to study new linkages between electrodes and molecular switches (alligator-clip compounds) for molecular electronics using Pt electrodes. Starting with the commonly used molecule 3-methyl-1,2-dithiolane (MDTL), which forms a five-membered ring structure in the gas phase, we found the most stable structure of the adsorbed MDTL to be the ring-opened molecule (32.44 kcal/mol) with each S atom bound to a surface bridge position. Afterward we calculated binding energies and geometries for a variety of different compounds:  S/O-based (oxathiolanes), O-based (methanol), N-based (imidazole, 1,2,3-triazole, purine, 2,4-diazapentane), and P-based molecules (methylphosphino, PCH_3, 3-methyl-1,2-diphospholane before (MDPL) and after H dissociation (H_(diss)-MDPL)). Among these alternative linkage molecules we find that only the P-based compounds lead to much higher binding energies than MDTL. The best compromise between strong surface attachment and mechanical stability provide the MDPL molecules. For the cis-ring-closed structure of MDPL a binding energy of 47.72 kcal/mol was calculated and even 54.88 kcal/mol for the ring-opened molecule. In the case of H-dissociative adsorption, which leads to H_(diss)-MDPL, both binding energies increase to 53.74 (ring-closed) and 74.99 kcal/mol (ring-opened). Thus, MDPL provides a much more stable link to the metal surface and might increase the conductance between molecular switch and electrode. In addition, the minor differences in charge and spin-density distribution between MDTL and MDPL might indicate similar properties for the attachment of the molecular switch to either of both alligator-clip compounds.

Additional Information

© 2007 American Chemical Society. Received 28 May 2006. Published online 25 January 2007. Published in print 1 February 2007. T.J. gratefully acknowledges support by the "Fonds der Chemischen Industrie" (VCI) and the German academic exchange service (DAAD).

Attached Files

Supplemental Material - jp0632844si20061005_063727.pdf

Files

jp0632844si20061005_063727.pdf
Files (1.1 MB)
Name Size Download all
md5:e2703140734a6eb6aa77cd80a2ab8fc1
1.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 26, 2023