Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2015 | public
Journal Article

Surface roughness imparts tensile ductility to nanoscale metallic glasses

Abstract

Experiments show an intriguing brittle-to-ductile transition on size reduction on nanoscale metallic glasses (MGs). Here we demonstrate that such phenomena is linked to a fundamental characteristic size effect in the failure mode under tensile loading. Large-scale molecular dynamics simulations reveal that nanoscaled MGs with atomistically smooth surfaces exhibit catastrophic failure via sharp, localized shear band propagation. In contrast, nanosized specimens with surface imperfections exhibit a clear transition from shear banding to necking instability above a critical roughness ratio of  ξ ∼ 1/20, defined as the ratio between the average surface imperfection size and sample diameter. The observed brittle-to-ductile transition that emerges in nanosized MGs deformed at room temperature can be strongly attributed to this roughness argument. In addition, the results suggest that the suppression of brittle failure may be scale-free and be realizable on length scales much beyond those considered here, provided the threshold roughness ratio is exceeded. The fundamental critical roughness ratio demonstrated sheds light on the complex mechanical behavior of amorphous metals and has implications for the application of MGs in nano- and micro-devices.

Additional Information

© 2015 Elsevier Ltd. Received 3 July 2015, Revised 22 August 2015, Accepted 22 August 2015, Available online 28 August 2015.

Additional details

Created:
August 22, 2023
Modified:
October 26, 2023