Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 1997 | public
Journal Article

A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media

Abstract

In this paper, we study a multiscale finite element method for solving a class of elliptic problems arising from composite materials and flows in porous media, which contain many spatial scales. The method is designed to efficiently capture the large scale behavior of the solution without resolving all the small scale features. This is accomplished by constructing the multiscale finite element base functions that are adaptive to the local property of the differential operator. Our method is applicable to general multiple-scale problems without restrictive assumptions. The construction of the base functions is fully decoupled from element to element; thus, the method is perfectly parallel and is naturally adapted to massively parallel computers. For the same reason, the method has the ability to handle extremely large degrees of freedom due to highly heterogeneous media, which are intractable by conventional finite element (difference) methods. In contrast to some empirical numerical upscaling methods, the multiscale method is systematic and self- consistent, which makes it easier to analyze. We give a brief analysis of the method, with emphasis on the "resonant sampling" effect. Then, we propose an oversampling technique to remove the resonance effect. We demonstrate the accuracy and efficiency of our method through extensive numerical experiments, which include problems with random coefficients and problems with continuous scales. Parallel implementation and performance of the method are also addressed.

Additional Information

© 1997 Academic Press. Received 5 August 1996. We thank Professor Bjorn Engquist and Mr. Yalchin Efendiev for many interesting and helpful discussions. This work is supported in part by ONR under the Grant N00014-94-0310 and DOE under the Grant DE-FG03-89ER25073.

Additional details

Created:
August 19, 2023
Modified:
October 26, 2023