Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 28, 2017 | Supplemental Material + Erratum + Published
Journal Article Open

Understanding dynamic friction through spontaneously evolving laboratory earthquakes

Abstract

Friction plays a key role in how ruptures unzip faults in the Earth's crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source.

Additional Information

© 2017 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Received: 09 July 2016; Accepted: 18 May 2017; Published online: 29 June 2017. This study was supported by the US National Science Foundation (NSF) (grant EAR 1321655 and EAR-1651235), and the US Geological Survey (USGS) (grant G16AP00106), and the Southern California Earthquake Center (SCEC), contribution No. 6276. SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038. We gratefully acknowledge Dr Hubert Schreier for developing VIC-2D software to treat interfaces with discontinuities. We also gratefully acknowledge Brian Kilgore and Nick Beeler for conducting low-velocity friction measurements for our samples reported in Lu (2009) and shown in Fig. 8a. Author Contributions: All authors contributed to developing the main ideas, interpreting the results, and producing the manuscript. V.R. performed the measurements. The authors declare no competing financial interests.

Errata

The HTML version of this Article incorrectly omits Supplementary Movie 1. Supplementary Movie 1 can be found as Supplementary Information associated with this Correction.

Attached Files

Published - ncomms15991.pdf

Supplemental Material - 41467_2019_8566_MOESM1_ESM.mp4

Supplemental Material - ncomms15991-s1.pdf

Erratum - s41467-019-08566-7.pdf

Files

ncomms15991.pdf
Files (2.4 MB)
Name Size Download all
md5:71bebf7e3c6ffe9335a29413e6553428
1.3 MB Preview Download
md5:94586f7c0c1ab4b44b96e1ef12508190
86.4 kB Preview Download
md5:3b7503085164ab19f5898c04f6a7bd4d
771.6 kB Download
md5:e19f035a289f2e7347b6047d91b15d22
236.1 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023