Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 15, 2017 | Published + Submitted
Journal Article Open

Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations

Abstract

We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v^5νΩ(t−t_0) where t_0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.

Additional Information

© 2017 American Physical Society. Received 28 October 2016; published 31 May 2017. We thank Luc Blanchet, Marc Favata, Bala Iyer, and Nico Yunes for useful discussions and comments on a previous draft. C. R. G. was supported by NSF Grants No. CAREER-0956189 and No. PHY-1404569 to the California Institute of Technology, by the Sherman Fairchild Foundation, and also thanks the Brinson Foundation for partial support. I. Z. R. was supported by Grant No. NSF-1407744.

Attached Files

Published - PhysRevD.95.104054.pdf

Submitted - 1609.08268.pdf

Files

1609.08268.pdf
Files (896.8 kB)
Name Size Download all
md5:0dbbff383f3512a23e0cd8ee16a823b5
526.5 kB Preview Download
md5:73538abbb233dc27d0cff3c6115310ec
370.3 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023