Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 21, 2002 | Supplemental Material
Journal Article Open

Effects of Interfacial Energetics on the Effective Surface Recombination Velocity of Si/Liquid Contacts

Abstract

Photoconductivity decay data have been obtained for NH_4F_((aq))-etched Si(111) and for air-oxidized Si(111) surfaces in contact with solutions of methanol, tetrahydrofuran (THF), or acetonitrile containing either ferrocene^(+/0) (Fc^(+/0)), [bis(pentamethylcyclopentadienyl)iron]^(+/0) (Me_(10)Fc^(+/0)), iodine (I_2), or cobaltocene^(+/0) (CoCp_2^(+/0)). Carrier decay measurements were made under both low-level and high-level injection conditions using a contactless rf photoconductivity decay apparatus. When in contact with electrolyte solutions having either very positive (Fc^(+/0), I_2/I^-) or relatively negative (CoCp_2^(+/0)) Nernstian redox potentials with respect to the conduction-band edge of Si, Si surfaces exhibited low effective surface recombination velocities. In contrast, surfaces that were exposed only to N_2(g) ambients or to electrolyte solutions that contained a mild oxidant (such as Me_(10)Fc^(+/0)) showed differing rf photoconductivity decay behavior depending on their different surface chemistry. Specifically, surfaces that possessed Si−OCH_3 bonds, produced by reaction of H-terminated Si with CH_3OH−Fc^(+/0), showed lower surface recombination velocities in contact with N_(2(g)) or in contact with CH_3OH−Me_(10)Fc^(+/0) solutions than did NH_4F_((aq))-etched, air-exposed H-terminated Si(111) surfaces in contact with the same ambients. Furthermore, the CH_3OH−Fc^(+/0)-treated surfaces showed lower surface recombination velocities than surfaces containing Si−I bonds, which were formed by the reaction of H-terminated Si surfaces with CH_3OH−I_2 or THF−I_2 solutions. These results can all be consistently explained through reference to the electrochemistry of Si/liquid contacts. In conjunction with prior measurements of the near-surface channel conductance for p^+−n−p^+ Si structures in contact with CH_3OH−Fc^(+/0) solutions, the data reveal that formation of an inversion layer (i.e., an accumulation of holes at the surface) on n-type Si, and not a reduced density of surface electrical trap sites, is primarily responsible for the long charge carrier lifetimes observed for Si surfaces in contact with CH_3OH or THF electrolytes containing I_2 or Fc^(+/0). Similarly, formation of an accumulation layer (i.e., an accumulation of electrons at the surface) consistently explains the low effective surface recombination velocity observed for the Si/CH_3OH−CoCp_2 and Si/CH_3CN−CoCp_2 contacts. Detailed digital simulations of the photoconductivity decay dynamics for semiconductors that are in conditions of inversion or depletion while in contact with redox-active electrolytes support these conclusions.

Additional Information

© 2002 American Chemical Society. Received 2 August 2001. Published online 22 February 2002. Published in print 1 March 2002. We acknowledge the National Science Foundation, grant CHE-9974562, for support of this research. We also are grateful to Reiner Nürnberg (Weierstrass-Institut, Berlin) and Adrian Lew (Caltech) for helpful discussions relating to the digital simulations.

Attached Files

Supplemental Material - jp012997d_s.pdf

Files

jp012997d_s.pdf
Files (407.5 kB)
Name Size Download all
md5:8720db61b85f6b8bbad20f0ef3d14a3b
407.5 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023