Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2017 | Published + Submitted
Journal Article Open

Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb

Abstract

We report the discovery of a planet – OGLE-2014-BLG-0676Lb– via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNET/Las Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and μ-FUN. All analyses of the light-curve data favour a lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 ± 0.13) × 10−3. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09^(+1.02)_(−1.12) MJ planet orbiting a 0.62^(+0.20)_(−0.22) M_⊙ host star at a deprojected orbital separation of 4.40^(+2.16)_(−1.46) au. The distance to the lens system is 2.22^(+0.96)_(−0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.

Additional Information

© 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. Accepted 2016 December 5. Received 2016 December 4; in original form 2016 September 25. TS acknowledges financial support from the Japan Society for the Promotion of Science (JSPS) under grant numbers JSPS23103002, JSPS24253004 and JSPS26247023. NK is supported by Grant-in-Aid for JSPS Fellows. The MOA project is supported by JSPS grants JSPS25103508 and JSPS23340064 and by the Royal Society of New Zealand Marsden Grant MAU1104. NJR acknowledges the contribution of NeSI high-performance computing facilities to the results of this research. New Zealand's national facilities are provided by the NZ eScience Infrastructure and funded jointly by NeSI's collaborator institutions and through the Ministry of Business, Innovation & Employment's Research Infrastructure programme (https://www.nesi.org.nz). The OGLE team thanks Prof. M. Kubiak and G. Pietrzyński, former members of the OGLE team, for their contribution to the collection of the OGLE photometric data over the past years. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to AU. The Danish 1.54 m telescope is operated based on a grant from the Danish Natural Science Foundation (FNU). The MiNDSTEp monitoring campaign is powered by ARTEMiS (Automated Terrestrial Exoplanet Microlensing Search; Dominik et al. 2008). This publication was made possible by NPRP grant nos. X-019-1-006 and 09-467-1-078 from the Qatar National Research Fund (a member of Qatar Foundation). KH acknowledges support from STFC grant ST/M001296/1. GD acknowledges Regione Campania for support from POR-FSE Campania 2014-2020. TCH acknowledges support from the Korea Research Council of Fundamental Science & Technology (KRCF) via the KRCF Young Scientist Research Fellowship Programme and for financial support from KASI travel grant number 2014-1-400-06. JS acknowledges support from the Communauté française de Belgique - Actions de recherche concertées - Académie Wallonie-Europe. This work has made extensive use of the ADS service, for which we are thankful. This work makes use of observations from the LCOGT network, which includes three SUPAscopes owned by the University of St Andrews. The RoboNET programme is an LCOGT Key Project using time allocations from the University of St Andrews, LCOGT and the University of Heidelberg together with time on the Liverpool Telescope through the Science and Technology Facilities Council (STFC), UK. This research has made use of the LCOGT Archive, which is operated by the California Institute of Technology, under contract with the Las Cumbres Observatory. The authors thank Matthew Penny for his comments on this manuscript.

Attached Files

Published - stw3185.pdf

Submitted - 1612.03511.pdf

Files

stw3185.pdf
Files (2.4 MB)
Name Size Download all
md5:d5dbee3555a83443ed232544a3c832ec
845.7 kB Preview Download
md5:50c8a4a28b9ce80545b6679b5acf2486
1.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023