Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 11, 2002 | public
Journal Article

Recent Advances in Understanding Flow Effects on Polymer Crystallization

Abstract

Molecular aspects of polymer melt rheology play an extremely strong role in governing the processing−structure−property relations of semicrystalline polymers, the dominant materials in the plastics industry. Recent advances in experimental apparatus and methods have revealed that the dramatic changes in crystallization kinetics and morphology induced during shear follow a kinetic pathway. The rate of formation of oriented precursors is not limited by the usual activation barrier to nucleation but instead occurs many orders of magnitude faster, at a rate that tracks the dynamics of the polymer chains in the melt. Model polymers and their binary blends have shown that the relevant melt dynamics that control formation of the oriented threadlike nuclei are those of the longest chains in the melt and that the effect of the long chains is cooperative, greatly enhanced by long chain−long chain overlap. Thus, insights gained into the role of chain dynamics in the molecular mechanism of shear-enhanced crystallization may soon combine with parallel advances over the past decade regarding the dynamics of polydisperse melts to provide the underpinnings for truly predictive models of flow-enhanced crystallization of polymers.

Additional Information

© 2002 American Chemical Society. Received 1 April 2002. Date accepted 6 June 2002. Published online 19 October 2002. Published in print 1 December 2002. We are very grateful to Dr. A. Prasad (Equistar Chemical) and Dr. R. L. Sammler (The Dow Chemical Co.) for providing the materials used in our studies. Synchrotron experiments were carried out at the beamline X27C of the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Divisions of Material Sciences and Chemical Sciences, under Contract DE-AC02-98CH10886. This work was made possible by a number of funding sources:  Financial support from Proctor and Gamble, the Cargill-NIST ATP, the Schlinger fund, and NSF (DMR9901403 and PHY99-07949) is gratefully acknowledged.

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023