Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 13, 2005 | Supplemental Material
Journal Article Open

Luminescent Ruthenium(II)− and Rhenium(I)−Diimine Wires Bind Nitric Oxide Synthase

Abstract

Ru(II)− and Re(I)−diimine wires bind to the oxygenase domain of inducible nitric oxide synthase (iNOSoxy). In the ruthenium wires, [Ru(L)_2L']^(2+), L' is a perfluorinated biphenyl bridge connecting 4,4'-dimethylbipyridine to a bulky hydrophobic group (adamantane, 1), a heme ligand (imidazole, 2), or F (3). 2 binds in the active site of the murine iNOSoxy truncation mutants Δ65 and Δ114, as demonstrated by a shift in the heme Soret from 422 to 426 nm. 1 and 3 also bind Δ65 and Δ114, as evidenced by biphasic luminescence decay kinetics. However, the heme absorption spectrum is not altered in the presence of 1 or 3, and Ru−wire binding is not affected by the presence of tetrahydrobiopterin or arginine. These data suggest that 1 and 3 may instead bind to the distal side of the enzyme at the hydrophobic surface patch thought to interact with the NOS reductase module. Complexes with properties similar to those of the Ru−diimine wires may provide an effective means of NOS inhibition by preventing electron transfer from the reductase module to the oxygenase domain. Rhenium−diimine wires, [Re(CO)_3L_1L_1']+, where L_1 is 4,7-dimethylphenanthroline and L_1' is a perfluorinated biphenyl bridge connecting a rhenium-ligated imidazole to a distal imidazole (F_8bp-im) (4) or F (F_9bp) (5), also form complexes with Δ114. Binding of 4 shifts the Δ114 heme Soret to 426 nm, demonstrating that the terminal imidazole ligates the heme iron. Steady-state luminescence measurements establish that the 4:Δ114 dissociation constant is 100 ± 80 nM. Re−wire 5 binds Δ114 with a K_d of 5 ± 2 μM, causing partial displacement of water from the heme iron. Our finding that both 4 and 5 bind in the NOS active site suggests novel designs for NOS inhibitors. Importantly, we have demonstrated the power of time-resolved FET measurements in the characterization of small molecule:protein interactions that otherwise would be difficult to observe.

Additional Information

© 2005 American Chemical Society. Received 22 May 2004. Published online 17 March 2005. Published in print 1 April 2005. We thank John Magyar for helpful discussions. This work was supported by the Fannie and John Hertz Foundation (A.R.D.), the National Institutes of Health (W.B., E.D.G.), and the National Science Foundation (H.B.G., J.R.W.).

Attached Files

Supplemental Material - ja046971msi20041029_063519.pdf

Files

ja046971msi20041029_063519.pdf
Files (350.0 kB)
Name Size Download all
md5:5a3717aeff17ac284b33aeae8764dded
350.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023