Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2010 | Supplemental Material + Published
Journal Article Open

Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species

Abstract

Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances.

Additional Information

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Received: October 26, 2009; Accepted: February 17, 2010; Published: March 23, 2010. Experimental work described here was supported by a Howard Hughes Medical Institute Investigator award to MBE and by National Institutes of Health (NIH) grant GM704403 to MBE and MDB. Computational analyses were supported in by NIH grant HG002779 to MBE. Work at Lawrence Berkeley National Laboratory was conducted under Department of Energy contract DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Colin Dewey for providing a Mercator orthology mapping for D. melanogaster and D. yakuba and producing the alignment with FSA. We thank the members of the Eisen lab for many helpful discussions and comments on the manuscript. Author Contributions: The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: RKB XYL MDB MBE. Performed the experiments: XYL HCC LAT. Analyzed the data: RKB CT SD LP MBE. Contributed reagents/materials/analysis tools: RKB CT LAT. Wrote the paper: RKB MBE. Competing interests: MBE is a co-founder and member of the Board of Directors of PLoS.

Attached Files

Published - journal.pbio.1000343.PDF

Supplemental Material - 144267.zip

Files

journal.pbio.1000343.PDF
Files (60.0 MB)
Name Size Download all
md5:3d220e2f4df2587a0061e41bbe5114dc
2.8 MB Preview Download
md5:09ff7d54e05e82ab1ae8572ed1d0c907
57.2 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023