Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 10, 2017 | Published
Journal Article Open

Self-consistent Black Hole Accretion Spectral Models and the Forgotten Role of Coronal Comptonization of Reflection Emission

Abstract

Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339–4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state's accretion rate. For bright hard states, we show that disk truncation to large scales R » R_(ISCO) is unlikely as this would require accretion rates far in excess of the observed Ṁ of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.

Additional Information

© 2017. The American Astronomical Society. Received 2016 August 15; revised 2017 January 5; accepted 2017 January 13; published 2017 February 13. J.F.S. has been supported by NASA Einstein Fellowship grant PF5-160144. We thank Ramesh Narayan and Charith Peris for helpful discussions, and the anonymous referee.

Attached Files

Published - Steiner_2017_ApJ_836_119.pdf

Files

Steiner_2017_ApJ_836_119.pdf
Files (1.4 MB)
Name Size Download all
md5:e86da457f3fe255b3e4c524fc66355fe
1.4 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023