Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 28, 2011 | Published
Book Section - Chapter Open

Multimode optical imaging for translational chemotherapy: in vivo tumor detection and delineation by targeted gallium corroles

Abstract

We report the feasibility of tumor detection and delineation in vivo using multimode optical imaging of targeted gallium corrole (HerGa). HerGa is highly effective for targeted HER2+ tumor elimination in vivo, and it emits intense fluorescence. These unique characteristics of HerGa prompted us to investigate the potential of HerGa for tumor detection and delineation, by performing multimode optical imaging ex vivo and in vivo; the imaging modes included fluorescence intensity, spectral (including ratiometric), lifetime, and two-photon excited fluorescence, using our custombuilt imaging system. While fluorescence intensity imaging provided information about tumor targeting capacity and tumor retention of HerGa, ratiometric spectral imaging offered more quantitative and specific information about HerGa location and accumulation. Most importantly, the fluorescence lifetime imaging of HerGa allowed us to discriminate between tumor and non-tumor regions by fluorescence lifetime differences. Finally, two-photon excited fluorescence images provided highly resolved and thus topologically detailed information around the tumor regions where HerGa accumulates. Taken together, the results shown in this report suggest the feasibility of tumor detection and delineation by multimode optical imaging of HerGa, and fluorescent chemotherapy agents in general. Specifically, the multimode optical imaging can offer complementary and even synergetic information simultaneously in the tumor detection and delineation by HerGa, thus enhancing contrast.

Additional Information

© 2011 SPIE. Partial support from the US Navy Bureau of Medicine and Surgery is gratefully acknowledged. This work was partially supported by grants from the NIH (R21 CA116014, R01 CA102126, R01 CA129822, and R01 CA140995), the DoD (BC050662), the Susan G. Komen Breast Cancer foundation (BCTR0201194), and the Donna and Jesse Garber Award. Work at Caltech was supported by NIH DK019038 and the Arnold and Mabel Beckman Foundation. Work at the Technion was supported by The Herbert Irving Cancer and Atherosclerosis Research Fund.

Attached Files

Published - 79020F_1.pdf

Files

79020F_1.pdf
Files (484.5 kB)
Name Size Download all
md5:8cf190d784c01d91de7b0eda9da3f789
484.5 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024