Single-mode dispersive waves and soliton microcomb dynamics
Abstract
Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing insights into nonlinear resonator physics, they can be applied in frequency metrology, precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton can radiate power as a dispersive wave through a process that is the optical analogue of Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes. Here, a limiting case is studied in which the dispersive wave is concentrated into a single cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour in the soliton's spectral and temporal properties. Also, an operating point of enhanced repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet states of soliton comb operation useful in many applications.
Additional Information
© 2017 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Received 24 Oct 2016; Accepted 6 Feb 2017; Published 23 Mar 2017. We gratefully acknowledge the Defense Advanced Research Projects Agency under the QuASAR and PULSE programs, and the Kavli Nanoscience Institute. Xueyue Zhang gratefully thanks the Caltech SURF program and the Tsinghua University Top Open Program, Spark Program and Initiative Scientific Research Program (No. 20161080166). Author Contributions: Experiments were designed by all authors. X.Y. and Q.-F.Y. performed the measuerments. X.Y., Q.-F.Y., X. Z., X.L. performed modelling. K.Y.Y. fabricated devices. Analysis of results was conducted by all authors. All authors participated in preparing the manuscript. The authors declare no competing financial interests.Attached Files
Published - ncomms14869.pdf
Submitted - 1610.08145v1.pdf
Supplemental Material - ncomms14869-s1.pdf
Files
Additional details
- PMCID
- PMC5376647
- Eprint ID
- 73419
- Resolver ID
- CaltechAUTHORS:20170111-102346194
- Defense Advanced Research Projects Agency (DARPA)
- Kavli Nanoscience Institute
- Caltech Summer Undergraduate Research Fellowship (SURF)
- Tsinghua University
- 20161080166
- Created
-
2017-01-21Created from EPrint's datestamp field
- Updated
-
2022-03-28Created from EPrint's last_modified field
- Caltech groups
- Kavli Nanoscience Institute