Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 10, 2016 | Published + Submitted
Journal Article Open

ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas

Abstract

In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ~ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted "knee" of the CO luminosity function (around 5 × 10^9 K km s^(−1) pc^2). We find clear evidence of an evolution in the CO luminosity function with respect to z ~ 0, with more CO-luminous galaxies present at z ~ 2. The observed galaxies at z ~ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z ~ 2 to z ~ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ~ 2).

Additional Information

© 2016 American Astronomical Society. Received 2016 May 3; revised 2016 September 5; accepted 2016 September 7; published 2016 December 8. We thank the anonymous referee for excellent feedback that improved the quality of the paper. F.W., I.R.S., and R.J.I. acknowledge support through ERC grants COSMIC-DAWN, DUSTYGAL, and COSMICISM, respectively. M.A. acknowledges partial support from FONDECYT through grant 1140099. D.R. acknowledges support from the National Science Foundation under grant number AST-1614213 to Cornell University. F.E.B. and L.I. acknowledge Conicyt grants Basal-CATA PFB-06/2007 and Anilo ACT1417. F.E.B. also acknowledges support from FONDECYT Regular 1141218 (FEB), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. I.R.S. also acknowledges support from STFC (ST/L00075X/1) and a Royal Society/Wolfson Merit award. Support for R.D. and B.M. was provided by the DFG priority program 1573 "The physics of the interstellar medium." A.K. and F.B. acknowledge support by the Collaborative Research Council 956, sub-project A1, funded by the Deutsche Forschungsgemeinschaft (DFG). L.I. acknowledges Conicyt grants Basal-CATA PFB-06/2007 and Anilo ACT1417. R.J.A. was supported by FONDECYT grant number 1151408. This paper makes use of the following ALMA data: [ADS/JAO.ALMA# 2013.1.00146.S and 2013.1.00718.S.]. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The 3 mm part of the ASPECS project had been supported by the German ARC.

Attached Files

Published - Decarli_2016_ApJ_833_69.pdf

Submitted - 1607.06770v2.pdf

Files

Decarli_2016_ApJ_833_69.pdf
Files (2.5 MB)
Name Size Download all
md5:2fec63ca8a719792ef2a0b772641832c
1.0 MB Preview Download
md5:c59d1ed9459160f8ff4f3119a0bd07d9
1.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023