Near-Infrared Wavefront Sensing
Abstract
We discuss the advantages of wavefront sensing at near-infrared (IR) wavelengths with low-noise detector technologies that have recently become available. In this paper, we consider low order sensing with laser guide star (LGS) adaptive optics (AO) and high order sensing with natural guide star (NGS) AO. We then turn to the application of near-IR sensing with the W. M. Keck Observatory (WMKO) AO systems for science and as a demonstrator for similar systems on extremely large telescopes (ELTs). These demonstrations are based upon an LGS AO near-IR tip-tilt-focus sensor and our collaboration to implement a near-IR pyramid wavefront sensor (PWFS) for a NGS AO L-band coronagraphic imaging survey to identify exoplanet candidates.
Additional Information
© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE). The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The Keck I near-IR tip-tilt sensor was supported by the National Science Foundation under Grant No. AST-1007058 and by the Gordon and Betty Moore Foundation under Grant No. 4046. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.Attached Files
Published - 990915.pdf
Files
Name | Size | Download all |
---|---|---|
md5:e19acecaacf0a3f07d8148f9d6c45920
|
2.6 MB | Preview Download |
Additional details
- Eprint ID
- 72543
- Resolver ID
- CaltechAUTHORS:20161205-080523798
- W. M. Keck Foundation
- NSF
- AST-1007058
- Gordon and Betty Moore Foundation
- 4046
- Created
-
2016-12-06Created from EPrint's datestamp field
- Updated
-
2021-11-11Created from EPrint's last_modified field
- Series Name
- Proceedings of SPIE
- Series Volume or Issue Number
- 9909