Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 20, 2016 | Published + Submitted
Journal Article Open

SN2002es-like Supernovae from Different Viewing Angles

Abstract

In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2–0.3 mag day^(-1), before it reached the R-band peak (−18.05 mag). On the other hand, iPTF14dpk rose rapidly to −17 mag within a day of discovery with a rise rate > 1.8 mag day^(-1) , and then rose slowly to its peak (−18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before −17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova–companion interaction.

Additional Information

© 2016 The American Astronomical Society. Received 2016 June 17; revised 2016 September 11; accepted 2016 September 12; published 2016 November 18. Y.C. and P.E.N. acknowledge support from the DOE under grant DE-AC02-05CH11231, Analytical Modeling for Extreme-Scale Computing Environments. Y.C. also acknowledges support by the GROWTH project funded by the National Science Foundation under Grant No 1545949. A.G.-Y. is supported by the EU/FP7 via ERC grant no. 307260, the Quantum Universe I-Core programme by the Israeli Committee for Planning and Budgeting and the ISF; by Minerva and ISF grants; by the Weizmann-UK "making connections" programme; and by Kimmel and ARCHES awards. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Attached Files

Published - Cao_2016_ApJ_832_86.pdf

Submitted - 1606.05655v1.pdf

Files

1606.05655v1.pdf
Files (1.3 MB)
Name Size Download all
md5:32a330830f26acb4b03e2635c0b2461e
822.2 kB Preview Download
md5:03f2c5e070c0965675d86ef9fc4e8edf
507.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023