MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory
Abstract
This paper describes the as-built performance of MOSFIRE, the multi-object spectrometer and imager for the Cassegrain focus of the 10-m Keck 1 telescope. MOSFIRE provides near-infrared (0.97 to 2.41 μm) multi-object spectroscopy over a 6.1' x 6.1' field of view with a resolving power of R~3,500 for a 0.7" (0.508 mm) slit (2.9 pixels in the dispersion direction), or imaging over a field of view of ~6.9' diameter with ~0.18" per pixel sampling. A single diffraction grating can be set at two fixed angles, and order-sorting filters provide spectra that cover the K, H, J or Y bands by selecting 3rd, 4th, 5th or 6th order respectively. A folding flat following the field lens is equipped with piezo transducers to provide tip/tilt control for flexure compensation at the <0.1 pixel level. Instead of fabricated focal plane masks requiring frequent cryo-cycling of the instrument, MOSFIRE is equipped with a cryogenic Configurable Slit Unit (CSU) developed in collaboration with the Swiss Center for Electronics and Microtechnology (CSEM). Under remote control the CSU can form masks containing up to 46 slits with ~0.007-0.014" precision. Reconfiguration time is < 6 minutes. Slits are formed by moving opposable bars from both sides of the focal plane. An individual slit has a length of 7.0" but bar positions can be aligned to make longer slits in increments of 7.5". When masking bars are retracted from the field of view and the grating is changed to a mirror, MOSFIRE becomes a wide-field imager. The detector is a 2K x 2K H2-RG HgCdTe array from Teledyne Imaging Sensors with low dark current and low noise. Results from integration and commissioning are presented.
Additional Information
© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). MOSFIRE was developed by the consortium of the University of California, Los Angeles, California Institute of Technology, University of California, Santa Cruz and the W. M. Keck Observatory. This material is based upon work supported by AURA through the National Science Foundation under AURA Cooperative Agreement AST 0132798, as amended. Funding has also been provided through a generous donation by Gordon and Betty Moore. It is pleasure to acknowledge the cooperation of the Swiss Centre for Electronics and Micro Technology (CSEM) and Teledyne Imaging Sensors. The authors gratefully acknowledge the outstanding support of the entire Keck Observatory staff during commissioning, especially Marc Kassis, Greg Wirth and Al Honey. We also thank all of the vendors that have worked with us to produce this instrument.Attached Files
Published - 84460J.pdf
Files
Name | Size | Download all |
---|---|---|
md5:3aa3558bbfebe03c15ec8ed1138e45e8
|
3.1 MB | Preview Download |
Additional details
- Eprint ID
- 71510
- Resolver ID
- CaltechAUTHORS:20161026-144435671
- NSF
- AST-0132798
- Gordon and Betty Moore Foundation
- Created
-
2016-10-27Created from EPrint's datestamp field
- Updated
-
2021-11-11Created from EPrint's last_modified field
- Series Name
- Proceedings of SPIE
- Series Volume or Issue Number
- 8446