Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 14, 2016 | Supplemental Material + Published
Journal Article Open

Enhanced ideal strength of thermoelectric half-Heusler TiNiSn by sub-structure engineering

Abstract

TiNiSn based half-Heusler (HH) compounds exhibit excellent thermoelectric (TE) performance. In realistic thermoelectric applications, high strength, high toughness TiNiSn based TE devices are required. To illustrate the failure mechanism of TiNiSn, we applied density functional theory to investigate the response along various tensile and shear deformations. We find that shearing along the (111)/〈110〉 slip system has the lowest ideal shear strength of 10.52 GPa, indicating that it is the most plausible slip system under pressure. The Ni–Sn covalent bond is more rigid than the Ni–Ti and Ti–Sn ionic bonds. The TiSn framework resists external deformation until the maximum shear stress. The softening of the Ti–Sn ionic bond leads to the decreased rigidity of the TiSn framework in TiNiSn, resulting in reversible plastic deformation before failure. Further shear deformation leads to the breakage of the Ti–Sn bond, hence resulting in the collapse of the TiSn framework and structural failure of TiNiSn. To improve the ideal strength, we suggest a sub-structure engineering approach leading to improved rigidity of the TiSn framework. Here, we find that the substitution of Ti by Hf and Zr can enhance the ideal shear strength to 12.17 GPa in Hf_(0.5)Zr_(0.5)NiSn, which is attributed to a more rigid XSn (X = Hf and Zr) framework compared to TiSn.

Additional Information

© 2016 The Royal Society of Chemistry. Received 17th May 2016; Accepted 22nd August 2016; First published online 23 Aug 2016. This work is partially supported by the National Basic Research Program of China (973-program) under Project no. 2013CB632505, the 111 Project of China under Project no. B07040, Materials Project by Department of Energy Basic Energy Sciences Program under Grant No. EDCBEE, DOE Contract DE-AC02-05CH11231, and China Postdoctoral Science Foundation (408-32200031). Q. A. and W. A. G. were supported by the Defense Advanced Research Projects Agency (W31P4Q-13-1-0010, program manager, John Paschkewitz) and by the National Science Foundation (DMR-1436985, program manager, John Schlueter). U.A. acknowledges the financial assistance of The Scientific and Technological Research Council of Turkey.

Attached Files

Published - c6ta04123j.pdf

Supplemental Material - c6ta04123j1.pdf

Files

c6ta04123j.pdf
Files (2.7 MB)
Name Size Download all
md5:b8f4d210ca0a1c94f7e9e68dca806c59
1.8 MB Preview Download
md5:209efe659b9f0c61f2690b8d32019bf2
910.4 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023