Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 10, 2016 | Accepted Version
Journal Article Open

Testing relativistic reflection and resolving outflows in PG 1211+143 with XMM-Newton and NuSTAR

Abstract

We analyze the broad-band X-ray spectrum (0.3–50 keV) of the luminous Seyfert 1/quasar PG 1211+143—the archetypal source for high-velocity X-ray outflows—using near-simultaneous XMM-Newton and NuSTAR observations. We compare pure relativistic reflection models with a model including the strong imprint of photoionized emission and absorption from a high-velocity wind, finding a spectral fit that extrapolates well over the higher photon energies covered by NuSTAR. Inclusion of the high signal-to-noise ratio XMM-Newton spectrum provides much tighter constraints on the model parameters, with a much harder photon index/lower reflection fraction compared to that from the NuSTAR data alone. We show that pure relativistic reflection models are not able to account for the spectral complexity of PG 1211+143 and that wind absorption models are strongly required to match the data in both the soft X-ray and Fe K spectral regions. In confirming the significance of previously reported ionized absorption features, the new analysis provides a further demonstration of the power of combining the high throughput and resolution of long-look XMM-Newton observations with the unprecedented spectral coverage of NuSTAR.

Additional Information

© 2016 The American Astronomical Society. Received 2016 April 6; revised 2016 August 22; accepted 2016 September 5; published 2016 November 9. This research has made use of the NASA Astronomical Data System (ADS), the NASA Extragalactic Database (NED) and is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and the NuSTAR mission, a project led by the California Institute of Technology (Caltech), managed by the Jet Propulsion Laboratory (JPL). APL and SV acknowledge support from STFC consolidated grant ST/K001000/1 and JNR acknowledges financial support via NASA grant NNX15AF12G. We thank an anonymous referee for highly constructive comments which helped improve the clarity of the paper. Facilities: XMM-Newton (EPIC), NuSTAR.

Attached Files

Accepted Version - 1609.01674v1.pdf

Files

1609.01674v1.pdf
Files (693.4 kB)
Name Size Download all
md5:a930b2f82ad5dbbbfb53f9299e4fb9cb
693.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023