Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 26, 2016 | Supplemental Material
Journal Article Open

Universal Relationship between Conductivity and Solvation-Site Connectivity in Ether-Based Polymer Electrolytes

Abstract

We perform a joint experimental and computational study of ion transport properties in a systematic set of linear polyethers synthesized via acyclic diene metathesis (ADMET) polymerization. We measure ionic conductivity, σ, and glass transition temperature, T_g, in mixtures of polymer and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. While T_g is known to be an important factor in the ionic conductivity of polymer electrolytes, recent work indicates that the number and proximity of lithium ion solvation sites in the polymer also play an important role, but this effect has yet to be systematically investigated. Here, adding aliphatic linkers to a poly(ethylene oxide) (PEO) backbone lowers T_g and dilutes the polar groups; both factors influence ionic conductivity. To isolate these effects, we introduce a two-step normalization scheme. In the first step, Vogel–Tammann–Fulcher (VTF) fits are used to calculate a temperature-dependent reduced conductivity, σ_r(T), which is defined as the conductivity of the electrolyte at a fixed value of T – T_g. In the second step, we compute a nondimensional parameter f_(exp), defined as the ratio of the reduced molar conductivity of the electrolyte of interest to that of a reference polymer (PEO) at a fixed salt concentration. We find that f_(exp) depends only on oxygen mole fraction, x_0, and is to a good approximation independent of temperature and salt concentration. Molecular dynamics simulations are performed on neat polymers to quantify the occurrences of motifs that are similar to those obtained in the vicinity of isolated lithium ions. We show that f_(exp) is a linear function of the simulation-derived metric of connectivity between solvation sites. From the relationship between σ_r and f_(exp) we derive a universal equation that can be used to predict the conductivity of ether-based polymer electrolytes at any salt concentration and temperature.

Additional Information

© 2016 American Chemical Society. Received: April 23, 2016; Revised: July 4, 2016; Published: July 15, 2016. The authors gratefully acknowledge Zhen-Gang Wang for useful discussions. This research was supported by the National Science Foundation under DMREF Award NSF-CHE-1335486. DSC experiments were performed at the Molecular Foundry user facilities at Lawrence Berkeley National Laboratory supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. M.A.W. also acknowledges support from the Resnick Sustainability Institute. D.M.P., M.A.W., and Y.J. contributed equally to the work. The authors declare no competing financial interest.

Attached Files

Supplemental Material - ma6b00851_si_001.pdf

Files

ma6b00851_si_001.pdf
Files (2.5 MB)
Name Size Download all
md5:a5bba1b2d395d373e95bb4a9f7801ccb
2.5 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023