Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 17, 2001 | Published
Journal Article Open

Femtosecond Studies of Protein-DNA Binding and Dynamics: Histone I

Abstract

In this contribution, we report studies of the nature of binding interactions and dynamics of protein histone I (H1) with ligands in solution and as a complex with DNA, an important biological process for the higher-order structure in chromatin. With femtosecond time resolution, we examined the role of solvation by water, the micropolarity at the interface of the binding site(s) of H1, and the rigidity of the complex structure. We used two biologically common fluorescent probes: 2-(p-toluidino)naphthalene-6-sulfonate (TNS) and 5-(dimethylamino)naphthalene-1-sulfonyl chloride (DC). By noncovalently attaching TNS and covalently adducting DC to the binding sites we found that the solvation dynamics, which occur within 1 ps, for the probe at the protein surface and in bulk solution are comparable, indicating the significant contribution of bulk water shells. However, the local polarity changes significantly, reflecting the change in dielectric properties at the protein/water interface. The binding structure of the protein–DNA complex was examined by the local orientational motion of the probe. The covalently bound DC molecule, sandwiched between the protein and DNA, was found to be frozen, revealing the very rigid structure at the recognition site, while, for noncovalently bound TNS, the complexes displace the probe. The dynamical rigidity of the complex, and the role of solvation and interface polarity, elucidate the strong recognition mechanism between DNA and the protein by electrostatic interactions, which are important to the compactness and to chromatin condensation in the biological function.

Additional Information

© 2001 Wiley-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany. Received: November 30, 2000. Version of Record online: 10 Apr 2001. This work is supported by the National Science Foundation. We would like to thank Dr. Chaozhi Wan for his help.

Attached Files

Published - 219_ftp.pdf

Files

219_ftp.pdf
Files (324.5 kB)
Name Size Download all
md5:48d4202656a81991a62d258cef1dd4bc
324.5 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 20, 2023