Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2012 | Published
Journal Article Open

Photoacoustic microscopy of blood pulse wave

Abstract

Blood pulse wave velocity (PWV) is an important physiological parameter that characterizes vascular stiffness. In this letter, we present electrocardiogram-synchronized, photoacoustic microscopy for noninvasive quantification of the PWV in the peripheral vessels of living mice. Interestingly, blood pulse wave-induced fluctuations in blood flow speed were clearly observed in arteries and arterioles, but not in veins or venules. Simultaneously recorded electrocardiograms served as references to measure the travel time of the pulse wave between two cross sections of a chosen vessel and vessel segmentation analysis enabled accurate quantification of the travel distance. PWVs were quantified in ten vessel segments from two mice. Statistical analysis shows a linear correlation between the PWV and the vessel diameter which agrees with known physiology.

Additional Information

© 2012 SPIE. Paper 12248L received Apr. 20, 2012; revised manuscript received May 22, 2012; accepted for publication May 22, 2012; published online Jun. 28, 2012. The authors appreciate the close reading of the manuscript by Professors. James Ballard, Seema Dahlheimer, and Lynnea Brumbaugh. Thanks to Amy Winkler and Brian Soetikno for helpful discussions. Thanks to Di Lang for experimental assistance. This work was sponsored by National Institutes of Health Grants R01 EB000712, R01 EB008085, R01 CA134539, U54 CA136398, R01 CA157277, and R01 CA159959. L.V.W. has financial interests in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work. K. Maslov has a financial interest in Microphotoacoustics, Inc.

Attached Files

Published - JBO_17_7_070504.pdf

Files

JBO_17_7_070504.pdf
Files (1.4 MB)
Name Size Download all
md5:500a419c442729c894651d3d69093441
1.4 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023