Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2012 | Published
Journal Article Open

Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy

Abstract

Aims: In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Materials and Methods: Optical-resolution (OR) and acoustic-resolution (AR) - Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Results: Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. Conclusions: The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

Additional Information

© 2012 Avti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Received November 22, 2011; Accepted March 11, 2012; Published April 9, 2012. This work was sponsored by the Carol Baldwin Fund (BS), and National Institutes of Health (BS) grant (1DP2OD007394-01) and (LVW) grants R01 EB000712, EB000712A2S1, R01 EB00071207S2, R01 EB008085, R01 CA113453901, U54 CA136398, and 5P60 DK02057933. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. LVW has a financial interest in Microphotoacoustics, Inc. and Endra, Inc., which, however, did not support this work. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials. The authors would like to thank Svetlana Lublinski for assistance and analysis with SCANCO image processing language (IPL) software and data collection. Author Contributions: Conceived and designed the experiments: PKA BS. Performed the experiments: PKA SH CF BS. Analyzed the data: PKA SH CF AGM JAJ KRS LVW BS. Contributed reagents/materials/analysis tools: PKA SH CF AGM JAJ KRS LVW BS. Wrote the paper: PKA SH CF KRS LVW BS.

Attached Files

Published - journal.pone.0035064.PDF

Files

journal.pone.0035064.PDF
Files (572.0 kB)
Name Size Download all
md5:422fcf2b9ea80f6a399e6100762e57ae
572.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023