Algorithms for Kullback--Leibler Approximation of Probability Measures in Infinite Dimensions
- Creators
- Pinski, F. J.
- Simpson, G.
-
Stuart, A. M.
- Weber, H.
Abstract
In this paper we study algorithms to find a Gaussian approximation to a target measure defined on a Hilbert space of functions; the target measure itself is defined via its density with respect to a reference Gaussian measure. We employ the Kullback--Leibler divergence as a distance and find the best Gaussian approximation by minimizing this distance. It then follows that the approximate Gaussian must be equivalent to the Gaussian reference measure, defining a natural function space setting for the underlying calculus of variations problem. We introduce a computational algorithm which is well-adapted to the required minimization, seeking to find the mean as a function, and parameterizing the covariance in two different ways: through low rank perturbations of the reference covariance and through Schrödinger potential perturbations of the inverse reference covariance. Two applications are shown: to a nonlinear inverse problem in elliptic PDEs and to a conditioned diffusion process. These Gaussian approximations also serve to provide a preconditioned proposal distribution for improved preconditioned Crank--Nicolson Monte Carlo--Markov chain sampling of the target distribution. This approach is not only well-adapted to the high dimensional setting, but also behaves well with respect to small observational noise (resp., small temperatures) in the inverse problem (resp., conditioned diffusion).
Additional Information
© 2015, Society for Industrial and Applied Mathematics. Submitted to the journal's Methods and Algorithms for Scientific Computing section August 11, 2014; accepted for publication (in revised form) April 9, 2015; published electronically November 17, 2015. [Simpson's] work was supported in part by DOE Award DE-SC0002085 and NSF PIRE Grant OISE-0967140. The first author's work was supported by EPSRC, ERC, and ONR. The second author's work was supported by an EPSRC First Grant.Attached Files
Published - stuart120.pdf
Submitted - 1408.1920.pdf
Files
Name | Size | Download all |
---|---|---|
md5:923db36beafa215188c8d75178617e71
|
4.1 MB | Preview Download |
md5:f6d6d16cca25058977ca417e41a31c36
|
2.0 MB | Preview Download |
Additional details
- Eprint ID
- 69074
- Resolver ID
- CaltechAUTHORS:20160715-163821138
- Department of Energy (DOE)
- DE-SC0002085
- NSF
- OISE-0967140
- Engineering and Physical Sciences Research Council (EPSRC)
- European Research Council (ERC)
- Office of Naval Research (ONR)
- Created
-
2016-07-18Created from EPrint's datestamp field
- Updated
-
2021-11-11Created from EPrint's last_modified field
- Other Numbering System Name
- Andrew Stuart
- Other Numbering System Identifier
- J120