Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2016 | Published
Journal Article Open

Carbon sequestration on Mars: Reply

Abstract

Martian atmospheric pressure has important implications for the past and present habitability of the planet, including the timing and causes of environmental change. The ancient Martian surface is strewn with evidence for early water bound in minerals (e.g., Ehlmann and Edwards, 2014) and recorded in surface features such as large catastrophically created outflow channels (e.g., Carr, 1979), valley networks (Hynek et al., 2010; Irwin et al., 2005), and crater lakes (e.g., Fassett and Head, 2008). Using orbital spectral data sets coupled with geologic maps and a set of numerical spectral analysis models, Edwards and Ehlmann (2015) constrained the amount of atmospheric sequestration in early Martian rocks and found that the majority of this sequestration occurred prior to the formation of the early Hesperian/late Noachian valley networks (Fassett and Head, 2011; Hynek et al., 2010), thus implying the atmosphere was already thin by the time these surface-water-related features were formed.

Additional Information

© 2016 Geological Society of America. First Published on May 23, 2016.

Attached Files

Published - e389.full.pdf

Files

e389.full.pdf
Files (171.4 kB)
Name Size Download all
md5:41a36219218eca8d66a1c7624d987ec9
171.4 kB Preview Download

Additional details

Created:
August 23, 2023
Modified:
October 20, 2023