Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1, 2012 | Supplemental Material + Submitted
Journal Article Open

Observation of spatially ordered structures in a two-dimensional Rydberg gas

Abstract

The ability to control and tune interactions in ultracold atomic gases has paved the way for the realization of new phases of matter. So far, experiments have achieved a high degree of control over short-range interactions, but the realization of long-range interactions has become a central focus of research because it would open up a new realm of many-body physics. Rydberg atoms are highly suited to this goal because the van der Waals forces between them are many orders of magnitude larger than those between ground-state atoms. Consequently, mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example is a quantum crystal composed of coherent superpositions of different, spatially ordered configurations of collective excitations. Here we use high-resolution, in situ Rydberg atom imaging to measure directly strong correlations in a laser-excited, two-dimensional atomic Mott insulator. The observations reveal the emergence of spatially ordered excitation patterns with random orientation, but well-defined geometry, in the high-density components of the prepared many-body state. Together with a time-resolved analysis, this supports the description of the system in terms of a correlated quantum state of collective excitations delocalized throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realize exotic phases of matter, thereby laying the basis for quantum simulations of quantum magnets with long-range interactions.

Additional Information

© 2012 Macmillan Publishers Limited. Received 11 July 2012. Accepted 13 September 2012. Published online 31 October 2012. We thank R. Löw for discussions. We acknowledge funding by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.) and JSPS (Postdoctoral Fellowship for Research Abroad to T.F.). Author Contributions: All authors contributed extensively to the work presented in this paper. The authors declare no competing financial interests.

Attached Files

Submitted - 1209.0944v1.pdf

Supplemental Material - nature11596-s1.pdf

Files

1209.0944v1.pdf
Files (2.6 MB)
Name Size Download all
md5:fd477c085c8dcfc6f2679a97d7af0946
2.3 MB Preview Download
md5:61d318282d3729ffe0e488098211fb33
332.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023