Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 26, 2012 | Submitted
Journal Article Open

Light-cone-like spreading of correlations in a quantum many-body system

Abstract

In relativistic quantum field theory, information propagation is bounded by the speed of light. No such limit exists in the non-relativistic case, although in real physical systems, short-range interactions may be expected to restrict the propagation of information to finite velocities. The question of how fast correlations can spread in quantum many-body systems has been long studied. The existence of a maximal velocity, known as the Lieb–Robinson bound, has been shown theoretically to exist in several interacting many-body systems (for example, spins on a lattice)—such systems can be regarded as exhibiting an effective light cone that bounds the propagation speed of correlations. The existence of such a 'speed of light' has profound implications for condensed matter physics and quantum information, but has not been observed experimentally. Here we report the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open perspectives for understanding the relaxation of closed quantum systems far from equilibrium, and for engineering the efficient quantum channels necessary for fast quantum computations.

Additional Information

© 2012 Macmillan Publishers Limited. Received 06 October 2011. Accepted 01 December 2011. Published online 25 January 2012. We thank C. Weitenberg and J. F. Sherson for their contribution to the design and construction of the apparatus. We also thank D. Baeriswyl, T. Giamarchi, V. Gritsev and S. Huber for discussions. C.K. acknowledges previous collaboration on a related subject with A. Läuchli. We acknowledge funding by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.), JSPS (Postdoctoral Fellowship for Research Abroad to T.F.), 'Triangle de la physique', ANR (FAMOUS) and SNSF (under division II and MaNEP). Financial support for the computer cluster on which the calculations were performed was provided by the Fondation Ernst et Lucie Schmidheiny. Author Contributions: M.C. performed the experiment. P.B. performed the numerical simulations. P.B., D.P. and C.K. developed the analytical model. M.C. and P.B. carried out the data analysis. All authors contributed to designing the study, to interpreting the data and to writing the manuscript. The authors declare no competing financial interests.

Attached Files

Submitted - 1111.0776v2.pdf

Files

1111.0776v2.pdf
Files (1.3 MB)
Name Size Download all
md5:6e56d6d977a7731719d8788b2181eaac
1.3 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023