Ion trap in a semiconductor chip
Abstract
The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose–Einstein condensation of cold gases to the precise quantum control of individual atomic ions. Work on miniaturizing electromagnetic traps to the micrometre scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass-spectrometer arrays, compact atomic clocks and, most notably, large-scale quantum information processors. Here we report the operation of a micrometre-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool and measure heating of a single ^(111)Cd^+ ion in an integrated radiofrequency trap etched from a doped gallium-arsenide heterostructure.
Additional Information
© 2006 Nature Publishing Group. Received 15 September 2005; accepted 28 October 2005; published 11 December 2005. We acknowledge useful discussions with J. A. Rabchuk, S. Horst, T. Olver, K. Eng, P. Lee, P. Haljan, K.-A. Brickman, L. Deslauriers and M. Acton. This work was supported by the US Advanced Research and Development Activity and National Security Agency under Army Research Office contract W911NF-04-1-0234, and the National Science Foundation Information Technology Research Program. The authors declare that they have no competing financial interests.Attached Files
Submitted - 0601052.pdf
Files
Name | Size | Download all |
---|---|---|
md5:62b04a95eef17cdc1ec7faca681346a4
|
541.0 kB | Preview Download |
Additional details
- Eprint ID
- 67258
- DOI
- 10.1038/nphys171
- Resolver ID
- CaltechAUTHORS:20160523-114031722
- Army Research Office (ARO)
- W911NF-04-1-0234
- National Security Agency
- NSF
- Advanced Research and Development Activity
- Created
-
2016-05-23Created from EPrint's datestamp field
- Updated
-
2021-11-11Created from EPrint's last_modified field