Optical transduction and routing of microwave phonons in cavity-optomechanical circuits
Abstract
Going beyond the canonical cavity-optomechanical system consisting of a Fabry–Perot cavity with a movable end mirror, here we explore a new paradigm in which phononic crystal waveguides are used to wire together local cavity elements to form interacting microcircuits of photons and phonons. Single cavity-waveguide elements, fabricated in the device layer of a silicon-on-insulator microchip, are used to optically excite and detect C-band (∼6 GHz) microwave phonons propagating in phononic-bandgap-guided acoustic waveguides. Interconnecting a pair of optomechanical cavities via a phonon waveguide is then used to demonstrate a tunable delay and filter for microwave-over-optical signals in the 1,500 nm wavelength band. Finally, we realize a tight-binding form of mechanical coupling between distant optomechanical cavities, leading to direct phonon exchange without dissipation in the waveguide. These initial demonstrations indicate the potential of cavity-optomechanical circuits for performing coherent signal processing as well as for realizing new modalities of optical readout in distributed micromechanical sensors.
Additional Information
© 2016 Macmillan Publishers Limited. Received 31 March 2016; accepted 28 April 2016; published online 13 June 2016. The authors thank J. Cohen and S. Meenehan for help with device fabrication and design. This work was supported by the Air Force Office of Scientific Research Hybrid Nanophotonics Multi-University Research Initiative, Defense Advanced Projects Agency ORCHID and MESO programmes, the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center, with support from the Gordon and Betty Moore Foundation and the Kavli Nanoscience Institute at Caltech. Author Contributions: O.P., K.F. and M.H.M. planned the experiment. K.F. and M.H.M. performed device design and fabrication. K.F., X.L. and M.H.M. performed the measurements. All authors contributed to writing the manuscript. The authors declare no competing financial interests.Attached Files
Supplemental Material - nphoton.2016.107-s1.pdf
Files
Name | Size | Download all |
---|---|---|
md5:3a64943ea2b7cf189cc10c2cc18eadf8
|
2.1 MB | Preview Download |
Additional details
- Eprint ID
- 66412
- Resolver ID
- CaltechAUTHORS:20160422-124451220
- Air Force Office of Scientific Research (AFOSR)
- Defense Advanced Research Projects Agency (DARPA)
- Institute for Quantum Information and Matter (IQIM)
- NSF Physics Frontiers Center
- Gordon and Betty Moore Foundation
- Kavli Nanoscience Institute
- Created
-
2016-06-14Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field
- Caltech groups
- Kavli Nanoscience Institute, Institute for Quantum Information and Matter