Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 20, 2016 | Published + Submitted
Journal Article Open

NuSTAR, Swift, and GROND observations of the flaring MeV blazar: PMN J0641−0320

Abstract

MeV blazars are a sub-population of the blazar family, exhibiting larger-than-average jet powers, accretion luminosities, and black hole masses. Because of their extremely hard X-ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the Fermi Large Area Telescope and subsequent follow-up observations with NuSTAR, Swift, and GROND of a new member of the MeV blazar family: PMN J0641−0320. Our optical spectroscopy provides confirmation that this is a flat-spectrum radio quasar located at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power-law photon index of ~1 up to ~80 keV) indicates that the emission is produced via inverse Compton scattering off of photons coming from outside the jet. The overall spectral energy distribution of PMN J0641−0320 is typical of powerful blazars and, using a simple one-zone leptonic emission model, we infer that the emission region is located either inside the broad line region or within the dusty torus.

Additional Information

© 2016 The American Astronomical Society. Received 2016 February 20; revised 2016 April 21; accepted 2016 April 22; published 2016 July 22. We thank the anonymous referee for useful comments. M.A. acknowledges generous support from NASA grant NNH09ZDA001N. M.B. acknowledges support from the International Fulbright Science and Technology Award and from NASA Headquarters under the NASA Earth and Space Science Fellowship Program, grant NNX14AQ07H. The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Études Spatiales in France. This NuSTAR work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). Part of this work is based on archival data, software, or on-line services provided by the ASI Data Center (ASDC). This research has made use of the XRT Data Analysis Software (XRTDAS). Part of the funding for GROND (both hardware and personnel) was generously granted by the Leibniz-Prize to G. Hasinger (DFG grant HA 1850/28-1). Facilities: Fermi/LAT, NuSTAR, Swift, GROND, Keck.

Attached Files

Published - apj_826_1_76.pdf

Submitted - 1602.06446v1.pdf

Files

1602.06446v1.pdf
Files (2.7 MB)
Name Size Download all
md5:ba463486388475057326f14514be1846
1.1 MB Preview Download
md5:a37752962a10098d9b5ec16fed0cef76
1.6 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 18, 2023