Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1999 | Published
Book Section - Chapter Open

An Integrated Vision Sensor for the Computation of Optical Flow Singular Points

Abstract

A robust, integrative algorithm is presented for computing the position of the focus of expansion or axis of rotation (the singular point) in optical flow fields such as those generated by self-motion. Measurements are shown of a fully parallel CMOS analog VLSI motion sensor array which computes the direction of local motion (sign of optical flow) at each pixel and can directly implement this algorithm. The flow field singular point is computed in real time with a power consumption of less than 2 mW. Computation of the singular point for more general flow fields requires measures of field expansion and rotation, which it is shown can also be computed in real-time hardware, again using only the sign of the optical flow field. These measures, along with the location of the singular point, provide robust real-time self-motion information for the visual guidance of a moving platform such as a robot.

Additional Information

© 1999 Massachusetts Institute of Technology. This research was supported by the Caltech Center for Neuromorphic Systems Engineering as a part of the National Science Foundation's Engineering Research Center program, as well as by the Office of Naval Research. The authors wish to thank Rainer Deutschmann for stimulating discussions.

Attached Files

Published - 1613-an-integrated-vision-sensor-for-the-computation-of-optical-flow-singular-points.pdf

Files

1613-an-integrated-vision-sensor-for-the-computation-of-optical-flow-singular-points.pdf

Additional details

Created:
September 15, 2023
Modified:
January 13, 2024