Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2004 | public
Journal Article

Conservation and divergence of BMP2/4 genes in the lamprey: expression and phylogenetic analysis suggest a single ancestral vertebrate gene

Abstract

Bone morphogenetic protein (BMP) molecules are members of a large family of signaling molecules important in numerous developmental pathways throughout the metazoa. Single members of the BMP2/4 class have been found in invertebrates such as cnidarians, arthropods, nematodes, echinoderms, ascidians, and cephalochordates. In all vertebrates studied, there are at least two copies, BMP2 and BMP4, that play important roles in axial patterning, tissue specification, and organogenesis. The basal vertebrate, lamprey, diverged near the time of vertebrate origins and is useful for understanding the gene duplication events that led to the increased complexity of the vertebrate genome. We characterized the sequence and expression pattern of BMP2/4 class genes in the sea lamprey, Petromyzon marinus. We uncovered three genes that we named PmBMP2/4A, PmBMP2/4B, and PmBMP2/4C. Phylogenetic analysis indicates that PmBMP2/4A is closer than PmBMP2/4B or PmBMP2/4C in sequence identity to both BMP2 and BMP4 ofgnathostomes. The developmental expression pattern of PmBMP2/4A also more closely resembles the combined early expression patterns of gnathostome BMP2 and BMP4, whereas PmBMP2/4B and PmBMP2/4C appear to play roles only later in development. Cell labeling showed that the BMP-expressing cells in the branchial arches of lampreys are of neural crest origin. Taken together, our sequence and expression data support the duplication of BMP2/4 genes in the lamprey from a single ancestral vertebrate BMP2/4 gene.

Additional Information

© Blackwell Publishing. Article first published online: 27 Oct 2004. We thank Daniel Meulemans, Tatjana Sauka-Spengler, and two anonymous reviewers for helpful comments to improve this manuscript. We also thank Roger Bergstedt and the staff at Hammond Bay Biological Station for aid in collecting and rearing embryos, and Jim Langeland for embryonic cDNA libraries. Supported by NASA grant NAG2-1585 to M. B. F.

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023