Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 29, 2003 | Supplemental Material
Journal Article Open

^1H NMR Studies of Nickel(II) Complexes Bound to Oligonucleotides: A Novel Technique for Distinguishing the Binding Locations of Metal Complexes in DNA

Abstract

The selective paramagnetic relaxation of oligonucleotide proton resonances of d(GTCGAC)_2 and d(GTGCAC)_2 by Ni(phen)_2(L)^(2+) where L = dipyridophenazine (dppz), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), and phenanthrenequinone (phi) has been examined to obtain structural insight into the noncovalent binding of these metal complexes to DNA. In the oligonucleotide d(GTCGAC)_2, preferential broadening of the G1H8, G4H8, T2H6, and C3H6 proton resonances was observed with Ni(phen)_2(dppz)^(2+), Ni(phen)_2(dpq)^(2+), and Ni(phen)_2(phi)^(2+). In the case of the sequence d(GTGCAC)_2, where the central two bases are juxtaposed from the previous one, preferential broadening was observed instead for the A5H2 proton resonance. Thus, a subtle change in the sequence of the oligonucleotide can cause significant change in the binding location of the metal complex in the oligonucleotide. Owing to comparable changes for all metal complexes and sequences in broadening of the thymine methyl proton resonances, we attribute the switch in preferential broadening to a change in site location within the oligomer rather than to an alteration of groove location. Therefore, even for DNA-binding complexes of low sequence-specificity, distinct variations in binding as a function of sequence are apparent.

Additional Information

© 2003 American Chemical Society. Received July 15, 2003. Publication Date (Web): December 3, 2003. The authors gratefully acknowledge the National Institutes of Health for financial support of this research (GM33309).

Attached Files

Supplemental Material - ic0348291si20031009_045807.pdf

Files

ic0348291si20031009_045807.pdf
Files (462.0 kB)
Name Size Download all
md5:2963b4c1580fbe13076c2268b9056d62
462.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023