Published February 12, 2008 | Supplemental Material
Journal Article Open

DNA Oxidation by Charge Transport in Mitochondria

An error occurred while generating the citation.

Abstract

Sites of oxidative DNA damage in functioning mitochondria have been identified using a rhodium photooxidant as a probe. Here we show that a primer extension reaction can be used to monitor oxidative DNA damage directly in functioning mitochondria after photoreaction with a rhodium intercalator that penetrates the intact mitochondrial membrane. The complex [Rh(phi)_2bpy]Cl_3 (phi = 9,10-phenanthrenequinonediimine) binds to DNA within the mitochondria and, upon irradiation, initiates DNA oxidation reactions. Significantly, piperidine treatment of the mitochondria leads to protein-dependent primer extension stops spaced every ∼20 base pairs. Hence, within the mitochondria, the DNA is well covered and packaged by proteins. Photolysis of the mitochondria containing [Rh(phi)_2bpy]^(3+) leads to oxidative DNA damage at positions 260 and 298; both are mutational hot spots associated with cancers. The latter position is the 5'-nucleotide of conserved sequence block II and is critical to replication of the mitochondrial DNA. The oxidative damage is found to be DNA-mediated, utilizing a charge transport mechanism, as the Rh binding sites are spatially separated from the oxidation-prone regions. This long-range DNA-mediated oxidation occurs despite protein association. Indeed, the oxidation of the mitochondrial DNA leads not only to specific oxidative lesions, but also to a corresponding change in the protein-induced stops in the primer extension. Mitochondrial DNA damage promotes specific changes in protein−DNA contacts and is thus sensed by the mitochondrial protein machinery.

Additional Information

© 2008 American Chemical Society. Received August 30, 2007; Revised Manuscript Received November 20, 2007. Publication Date (Web): January 12, 2008. We are grateful to the NIH (Grant GM49216) for their financial support of this research including a minority postdoctoral fellowship to E.J.M.

Attached Files

Supplemental Material - bi701775s_si_002.pdf

Files

bi701775s_si_002.pdf
Files (121.4 kB)
Name Size Download all
md5:f64fc61861fa01ce14cc334d4bfdbf65
121.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023